

AFRL-IF-RS-TR-2004-136
Final Technical Report
May 2004

DETECTOR AND EXTRACTOR OF FILEPRINTS
(DEF) PROTOTYPE

Black River Systems Company, Inc.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

 STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2004-136 has been reviewed and is approved for publication

APPROVED: /s/
 ANDREW J. NOGA
 Project Engineer

 FOR THE DIRECTOR: /s/
 JOSEPH CAMERA, Chief
 Information & Intelligence Exploitation Division
 Information Directorate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
MAY 2004

3. REPORT TYPE AND DATES COVERED
FINAL Mar 03 – Nov 03

4. TITLE AND SUBTITLE

DETECTOR AND EXTRACTOR OF FILEPRINTS (DEF) PROTOTYPE

6. AUTHOR(S)

Richard Henry

5. FUNDING NUMBERS
C - F30602-03-C-0068
PE - 63789F
PR - STG3
TA - 03
WU - 04

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Black River Systems Company, Inc.
162 Genesee Street
Utica NY 13502

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/IFEC
32 Brooks Road
Rome NY 13441-4114

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRLIF-RS-TR-2004-136

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Andrew J. Noga/IFEC/(315) 330-2270 Andrew.Noga@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
The Detector and Extractor of Fileprints (DEF) algorithm is a technique for representing data sequences in the form of
fileprints. It combines a periodogram-based process with the Adjustable Bandwidth Concept (ABC) detector algorithm
to generate these outputs. DEF at this time has two primary applications. The first application protects the payload of a
file from unauthorized tampering or distribution. The second identifies an arbitrary segment of data by comparing
results to the fileprints generated by running the algorithm on “truth” files of known types. A demonstration application
was written in the Java programming language, which consists of graphical and textual modes of operation both of
which are capable of producing fileprints on one or more target files. A general report is created for each file that is
processed. A visualization of the prints created is presented to the user and processed statistically. The tamper
detection capabilities of the system are strong, and it is able to detect very small differences in data segments. Further
precision would make this feature more useful and open it up to more applications of the technology.

15. NUMBER OF PAGES14. SUBJECT TERMS
Detector and Extractor of Fileprints (DEF), JAVA, Periodogram-based process, Swing,
Adjustable Bandwidth Concept (ABC) 16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

16

i

Table of Contents

List of Figures.. ii

1. Abstract.. 1
 1.1. Executive Summary ... 1

2. Introduction... 2

2.1. DEF/ABC Technology ... 2
2.2. Java Technology... 3
2.3. Other Technologies .. 3

3. Design and Implementation ... 4

3.1. Overview ... 4
3.2. Class Heirarchy .. 4
3.3. User Interface ... 6

4. Conclusions and Future Efforts... 10

4.1. Conclusions ... 10
4.2. Future Efforts... 10

References .. 11

ii

List of Figures

Figure 1: The DEF Algorithm.. 3

Figure 2: Basic DEF Classes.. 5

Figure 3: The Main Application Window.. 6

Figure 4: The Data-Print Database .. 7

Figure 5: The Main Report .. 7

Figure 6: The Print View ... 8

Figure 7: The Tamper Detection View .. 9

Figure 8: The Blind File Identification View .. 10

1

1. Abstract
1.1. Executive Summary
The Detector and Extractor of Fileprints (DEF) algorithm is a technique for representing data
sequences in a reproducible and compressed form. It combines a periodogram-based process
with the Adjustable Bandwidth Concept (ABC) detector algorithm to generate these outputs. The
outputs of this process have a number of properties but two of these properties stand out.

• The fileprints are reproducible from machine to machine and platform to platform.
• The fileprints of like file types hold significant similarities.

From these two properties of DEF file-prints bring about the two primary goals of this effort.
The first goal is to protect the payload of a file from unauthorized tampering or distribution by
creating an associated file-print to deliver with the original file for comparison purposes. Along
the same lines it holds that even if a file is changed in size or renamed, the unchanged segments
of the file can still be identified as being consistent. The applications of this technique could
include tampering detection and copyright/intellectual property rights claim analysis.
The second goal was to be able to identify an arbitrary segment of data by comparing it to the
DEF outputs run on "truth" files of known types. Upon analyzing a segment of data, the DEF
outputs could be statistically compared with known prints of known types. The one with the least
amount of error in comparison would then be known as the "detected" segment data type.
With these goals in mind a demonstration application was written in the Java programming
language. Design goals beyond the implementation of DEF included cross-platform
compatibility and intellectual property/code reusability. The application created consists of
graphical and textual modes of operation both of which are capable of producing file-prints on
one or more target files. The graphical interface takes the next step by providing the user with the
ability to analyze the outputs of the DEF process.
A general report is created for each file that is processed. This report provides information on the
file itself, the outputs created and how long the operation took to complete. A visualization of the
prints created is presented to the user for demonstration and engineering purposes. After these
prints are created they are processed statistically and compared to a truth database of previously
processed files and an attempt is made to detect what the MIME type of the segment or file and
the comparisons made are presented to the user. If the application sees a data source once,
subsequent calls on the same data source give the user the opportunity to compare the two sets of
DEF outputs for differences and similarities.
The tamper detection capabilities of the system are strong. It is able to detect very small
differences in data segments. The caveat of our approach thus far is that the precision is only as
good as the segment size being processed. Further precision would make this feature more
useful and open it up to more applications of the technology.

2

The blind data identification capabilities are currently at approximately 60% efficiency, taking
into account some file types detect better than others. Currently the application only processes
the first stage file print as a source of statistics. In the future the other stages of processing should
be added to this process. A Bayesian analysis technique, normalization of highly variant truth
samples and other statistical improvements can also be applied to improve the performance of
the algorithm in the future.

2. Introduction
2.1. DEF/ABC Technology
Dr. Andrew Noga of the Air Force Research Laboratory (AFRL) developed the DEF algorithm.
The DEF algorithm provides a repeatable process by which reproducible condensed data-prints
can be generated. Potential applications of the algorithm include alternatives to modern
watermarking approaches, data tamper protection and blind data segment content identification.

• DEF - Detector and Extractor of File-Prints
• ABC - Adjustable Bandwidth Concept Detector

Operation of the DEF algorithm starts with data segment selection. This segment could be a
portion of a file or any other stream of data. After the selection process is complete, a
periodogram (discrete Fourier transform) is calculated for that data segment. The result of that
transformation is filtered by the ABC detector, which generates a pre-specified number of
detection maps. A threshold is applied to the detection maps and then the data is stored in an
efficient binary format. This binary output is known as the file-print or data-print.
The following diagram gives a general overview of the DEF algorithm.

3

Figure 1: The DEF Algorithm

2.2. Java Technology
Java was chosen as the language for this effort primarily for its portability. The development
platform consists of the following configuration:

• The Sun Java Developers Kit v1.4.2
• The NetBeans v3.5 IDE
• CVS Version Control System v1.11.1.3 (Build 57j)

All of these tools are freely available on the Internet and this environment is easily configured on
most platforms including Windows, UNIX or Linux.

2.3. Other Technologies
To manage the blind data identification metadata and organize the previously processed data-
prints, a Java relational database package was implemented as part of the demonstration. Hsqldb
is a relational database engine written in Java, with a JDBC driver, supporting a rich subset of
ANSI-92 SQL (BNF tree format). It offers a small, fast database engine that offers both in
memory and disk based tables.

Compression/Encode
Parameters

1
2
R

Compressor/
Encoder

Fileprints

 Secure Key

Thresholds ABC
Parameters

Parsing
Parameters

N

Segment
Selector

Periodogram
Calculator

1
2
M

ABC
Processor

Threshold-Based
Detector

4

Another sub-technology to Java included in this project was the Jimi library, also developed and
distributed by Sun Microsystems. This graphics conversion and processing library is used in
DEF primarily in the context of image format encoding and decoding. This technology may be
incorporated in future releases of Java.

3. Design and Implementation
3.1. Overview
There are three primary tasks associated with this portion of the DEF Java demonstration effort:

1. Implementation of the DEF and ABC algorithms and the user interface in the Java
programming language.

2. File tamper detection using the DEF algorithm.
3. Blind file identification using the DEF algorithm.

Another goal of the development process was reusability of key technologies involved in the
DEF process. These key technologies included the DEF and ABC algorithms, statistical
techniques used in data-print processing and data format encoders and decoders. Efforts have
been made to maintain separation of presentation and implementation.

3.2. Class Heirarchy
The DEF demonstration application is driven by the DEFUI class. This class contains the main
method of the application which is specified in the applications JAR manifest. From this class
the user can either run a set of inline routines for command line processing or start the Swing
user interface to work in graphical mode.
Once in graphical mode, operation is driven by the applications "views". A view is a
representation of the applications data pertaining to one or more functions of the DEF algorithm.
Currently the application has four view types:

• DEFHTMLView
• The base view for a processing session, generates the data-prints and the

thresholds file and reports generated output, run time and other useful information
back to the user.

• DEFTamperView
• Show differences, both textually and graphically, between two sets of data-prints

taken of the same target data. Used to find similarities and differences in data over
time.

5

• DEFFIDView

• Processes the file with some statistical techniques and compares the results with an
internal database of truth data. Displays a graph representing error factors in
comparison to the truth data set.

• printImageDump
• Generates a graphical view of the detection maps, or data-prints, created by the

DEF algorithm. Useful for side by side analysis and as a general purpose
engineering and demonstration tool.

Figure 2: Basic DEF Classes

6

A number of utility classes not described here were also developed to assist in tasks related to
mathematical operations, random number generation, graphical user interface and automation, all
of which are suitable for reuse in this and other java applications.

3.3. User Interface
The user interface for this project was designed to try to meet a number of goals. An attempt was
made to keep the functionality general enough to be useful as an engineering tool for further
application development but compact enough to display potential uses of the application to
interested parties.
When the application is first started the user is presented with the main application window. This
window is made up of a main menu, a toolbar with some user preferences, a file navigation area
and the general desktop where reports are displayed.

Figure 3: The Main Application Window

As the user begins to create data-prints they are indexed by file name and by the time of the
printing and stored for later access. A listing of previously created prints, the number of stages
included and the date and time the print was taken are displayed in the data-print database view.
This view is found on the second tab in the left-most pane along with the file navigation tool.

fr^fn

7

Figure 4: The Data-Print Database

Each time the user creates a print they are first presented with a general report of what has taken
place. This report displays the file that was processed, the number of prints created and their
locations, the time taken to create the prints and a ratio of data processed to time for
benchmarking purposes.

Figure 5: The Main Report

RIB System DEF FilePfinls

exiiense-eoir-0727200a.xls @ 2003-11-19 16:13:17.15613 stages 1

afrl-bg2.ipe @ 2003-11-19 16:24:15.04613 stages]

afrl-me(l.air@2ail3-11-19 16:24:15.296 13stages]

der.j|ig@20D3-11-191S:24:15.S2e[3 stages]

iiff l-l)a.]pg ® 2003-11-19 16:24:14-06S [3 stages]

ilefdemo.JiiB® 2003-11-19 16:24:16.109[3 stages]

afrl-lig.gifig 2003-11-19 16:24:14.09 [3 stages I

lemp.j|)g@2003-11-ig 16:24:16.406] 3 stages]

arrl-lig34pe @ 2003-11-19 16:24:15.234] 3 stages]

temp.png @ 2003-11-19 16:24:16.631] 3 stages]

afil-bg2jpg @ 2003-11-19 16:29:03.710] 3 stages]

arn Dg.jpg @ 2003-11 19 16:29:03.570] 3 stages)

detcjeino.jiig Q 2003-11-19 1S:29:04.7S 13 stages]

temp.iing ® 2003-11-19 16:29:05.046] 3 stages]

der.jiig @ 2003-11-19 16:29:04.5151 3 stages]

temp.]|)g @ 2003-11-19 16:29:04.075 [3 stages]

arrl-meil.gif@ 2003.11-19 16:29:04.070] 3 stages]

afrl-bg34pg @ 2003-11-19 16:29:03.765] 3 stages]

afil-bg.gif@ 2003-11-19 16:29:03.515] 3 stages]

temp.jiig @ 2003-11-19 16:34:45.593] 3 stages]

def.jiig @ 2003-11-19 16:34:45.0 [3 stages |

aftl-bg.jpg @ 2003-11-19 16:34:44-107] 3 stages]

dellsuiipott.xls @ 2003-11-19 16:34:46.0] 3 stages |

temp.png @ 2003-11-19 16:34:45.64] 3 stages |

Q Citexanqiled^^aitial^arrier Ja^^eg .^irf s
(Processfcig Resulls PitilVieii ; He MenlMicaliiiii Tamper Cimipaiismi I

DEF FUepiint Creation

Operation successful.

File: C:\eaan:?iledel^Hrliaftcamer_j^peg(102-4KB)

Processing time : D 297 secona(s) (344 73116KB/s)

Generated files : C:\eaan:?iledef\bin^irinls\camerJ^pe^004020!'140913\camajayp^thr(0-304KB)
C:\eaan:?iledef\bin^irinls\camerJ^pe^004020!'140!'13\cama_|an)cg Id^i (6-403KB)
C:\eaan:?iledef\bin^irinls\camerJ^pe^004020!'140!'13\camer_j^peg-2-d5i (6-403KB)
C:\eaampledef\bin^irinls\camerJ^pe^004020!'140!'13\cameJa5^eg 3-dip (6-403KB)

8

The next tab in the report window is the print view. In this view the user can actually view the
prints created and look for interesting segments in the data. This view’s primary purpose is as an
engineering aid but is quite useful in a demonstration context.

Figure 6: The Print View

After a print is created and stored in the database, subsequent runs on the same file give the user
the ability to compare the two runs together and see if any changes have been made. Both a
graphical representation and textual chunk-by-chunk comparison outputs are provided. A future
use of this view may be to compare data to see what is the same, for example, in a copyright
contention scenario.

9

Figure 7: The Tamper Detection View

A truth database was constructed by creating prints for known file-types and storing statistical
analysis of these outputs in an internal database. At runtime the users’ data is analyzed in a
similar fashion and then compared against this database. Rudimentary support has been
implemented with interesting results. This view displays an error term for each known type of
file in comparison to the target file. The green bar denotes the detected type.

10

Figure 8: The Blind File Identification View

4. Conclusions and Future Efforts
4.1. Conclusions
This effort to date has provided very interesting results in both the tampering detection and blind
identification areas. It has been successfully demonstrated as part of the Scientific Advisory
Board (SAB) presentation for AFRL in November of 2003. With further development and
refinement of the techniques started here, the DEF algorithm has a bright future as a potential
part of numerous non-civilian and civilian applications.

4.2. Future Efforts
Future efforts should include the following:

• Improvement of the blind file detection capablilities.
• Improvement in the precision capabilities of the tampering detection algorithm.
• Better control for "batch-mode" processing.
• Refinement of the user interface.
• Other more application specific tasks.

Q CiLexampleclefiiaitlalLcarrlerJaypeg Q^ET S

' Processng RestMs ' PiiilView File Iclenlificdtlon ' Tamper Comparison

52 561

59 541

42 145

2G.322

45 227

36 906

36 326

49 465

34 113

50 079

65 730

72 754

42 094

36 458

46 055

49 276

53 276

55 736

^^~

(CorelWPj

ASCII

GIF image ilsta

JPEG image data. JFIF standaril 1.02
Lijtus 1-2-3 wkl documiint datj

MP3, 9SkBits.44 1 kHz. Mono

MPEGvifleo stream flata

Microsoft Excel Document

Microsoft PowerPoint Document

Microsoft Worfl Document

PC tiitmap flata, Winflows 3.xformat, 24 bpp

PC tiitmap aata. Winflows 3 xfoimat, B bpp

PDF flocument

PNG image data, 8-Bit grayscale, non-inteilaced

PNG image data, 8-brt/color RGB, non-interlaced

RIFF, AVI

RIFF, WAVE audio, Microsoft PCM, 16 Bit, mono 16000 Hz

RIFF. WAVE audio, Microsoft PCM. 8 bit. mono 16000 Hz

Results of Stage 1 Fileprint Statistical Analysis
(Highlighted/Gieen selection is the detected filetype.)

11

References

[1] U.S. patent 5,257,211 “Adjustable Bandwidth Concept Signal Energy Detector,” October
1993.

[2] Patent Pending; see http://www.uspto.gov/ Publication Number US/2004 0078574-A1.

